Laboratory plasma experiments using merging supersonic plasma jets

Bringing Space Down to Earth Workshop, UCLA

Scott C. Hsu, LANL April 11, 2017

Office of Science

Six argon plasma jets merging (10-ns exposure, false color).

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Outline

- Experimental platform
- Configurations, parameter ranges, and physics studies enabled
- Sample results from colliding-jet experiments

Existing experimental platform

Plasma Liner Experiment (PLX)

Six coaxial plasma guns mounted on a 9-ft.-diameter chamber.

Innovative coaxial plasma guns produce supersonic plasma jets of unprecedented combination of mass, density, and velocity

Planned and proposed experimental platforms

Space plasmas span a broad parameter range presenting a challenge to laboratory experiments

key parameters	"traditional" lab plasma experiments	PLX achieved/ proposed
β	< 1	0.01–10
$\rho v^2 / (B^2 / 2\mu_0)$	<< 1	0.1–100
M, M _A	<< 1	M>>1, M _A ≥ 1
T _e , T _i	<20 eV	>50 eV
R _m	<100	~5×10 ³
S	<10 ³	~10 ⁵
λ _{ii} /L	~1	0.01–5

Key challenges for PLX include having sufficient plasma lifetime (need $\tau >> \tau_{ci}$) and spatial size (need L >> c/ ω_{pi})

Three fundamental plasma configurations

Configuration	Attributes	Physics studies enabled	Relevant space environments or problems
Colliding jets with or w/o B field	High counter- streaming velocities to access magnetized, collisionless regimes	Shock structure and particle acceleration, collisionless-shock dissipation mechanisms	Magnetopause, heliopause
Jets colliding with mirror-like target (low or high β)	Both high temperature and flow-dominated, inherently 3D/ dynamic	Flow-driven dynamo, 3D reconnection, collisionless shocks, possibly low- or high-β turbulence	Solar corona, solar wind, magnetotail
Single-jet propagation	Simple, diagnosable	EOS, non-LTE atomic physics, basic heat/ momentum transport, turbulent flow	lonosphere or other with Z>1

Parameters for plasma configurations

parameter	case 1	case 2	case 3a	case 3b
	(jet)	(colliding jets)	(low- β mirror)	(high- β mirror)
scale size (cm)	20	20	30	30
duration (μs)	10	20	100	20
$n_i \; ({\rm cm}^{-3})$	10^{14}	10^{14}	10^{14}	10^{14}
T_i (eV)	1.5	5.5	50	50
T_e (eV)	1.5	2.5	50	50
velocity (km/s)	100	100	50	50
B (G)	10	100	5000	200
β	121	3.2	0.02	10
$\rho_i \ (cm)$	12.5	2.4	0.14	3.6
τ_{ci} (μs)	66	6.6	0.13	3.3
$\lambda_{mfp,i}$ (cm)	0.06	0.7	40	40
$\lambda_{mfp,e} \ (\text{cm})$	0.04	0.1	28	28
c/ω_{pi} (cm)	2.3	2.3	2.3	2.3
$(\omega \tau)_i$	0.004	0.3	276	11
$(\omega \tau)_e$	0.13	2.7	8380	335
M_A	46	4.6	0.05	1.2
S	1.2	24	111000	4430
Rm	54	110	5070	5070
Re	3140	129	0.6	0.6

Collisional shock formation by obliquely merging plasma jets \rightarrow confirming the hydrodynamic limit

E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013); Phys. Plasmas 21, 055703 (2014).

First attempt to generate a collisionless shock; we were thwarted by an interesting effect

Our new plasma guns have much-lower impurity levels \rightarrow interaction expected to remain collisionless

A. L. Moser and S. C. Hsu, Phys. Plasmas 22, 055707 (2015).

Precursor to a "mirror target": studies of Rayleigh-Taylor instability at a decelerating plasma interface

Boresight position (cm)

C. S. Adams, A. L. Moser, and S. C. Hsu, Phys. Rev. E 92, 051101(R) (2015).

Possible effects of impurities and radiation cooling on shock formation (using new plasma guns)

3-gun shots; end-on view; $t=27 \ \mu s$ after guns fire; 10-ns exposure (log intensity plotted in false color)

Early shot after gun install, up to 50% higher impurity level compare to right-hand image

20 shots later (same settings), up to 50% lower impurity level compared to left-hand image

Discussion and questions

Sample interferometry data

Sample spectroscopy data

Figure 2: Spectroscopic measurements of argon experiments for $t = 35 \ \mu s$ (shot #1834) and $t = 40 \ \mu s$ (shot #1833), near z = 0 cm [see Fig. 2(a) of the paper for spectrometer chord position]. Lines used to determine T_e , 514.7 nm (Ar II) for the $t = 35 \ \mu s$ case and 451.4 nm (Al III) for the $t = 40 \ \mu s$ case, are indicated with an asterisk.