Indirect dark matter searches

ATI PhD school, UCLA 20th Feb 2018

Christoph Weniger

University of Amsterdam

Overview

- General idea and mechanisms
- Overview of most relevant constraints
 - Dwarfs, CMB, Air Cherenkov Telescopes
- Anomalies and hints in the data
 - AMS-02 anti-protons
 - Fermi GeV excess
 - 3.5 keV X-ray line (?)
- Some new statistical techniques (?)
- Outlook

General idea and mechanisms

Is dark matter dark?

Stellar light distribution

Illustris simulation, most massive z=0 cluster

http://www.illustris-project.org/media/

Dark matter annihilation/decay and cosmic rays

DM self-annihilation into gamma rays

Gunn+ 1978; Stecker 1978, ...

Proposal to search for anti-protons from MSSM neutralinos

Silk & Srednicki 1984; ...

Searching for neutrinos from the Sun

Silk, Olive & Srednicki 1985; Press & Spergel 1985; ...

Searches for gamma-ray lines

Bergström & Snellmann 1988; Rudaz 1989; ...

Decay

Very model dependent (sterile neutrinos, R-partiy violating gravitino DM, axions, ...)

Overview

Source terms

Differential source terms

$$\frac{d\mathcal{S}_i}{dE} \equiv \frac{d^5N}{dtdVdE}$$

Dark matter decay

$$\phi_{\rm dm} \to \gamma \gamma, \bar{f}f, \dots$$

 $\psi_{\rm dm} \to \gamma \nu, Z^0 \nu, \dots$

$$\frac{d\mathcal{S}_i}{dE} = \frac{\Gamma_{\rm dm}}{m_{\rm dm}} \frac{dN_i}{dE} \rho_{\rm dm}$$

Stable standard model particles

 $i = \gamma, e^{\pm}, \nu_i, p^{\pm}, N^{\pm}$

Dark matter annihilation

 $\phi_{\rm dm}\phi_{\rm dm} \to \gamma\gamma, \bar{f}f, \dots$ $\psi_{\rm dm}\psi_{\rm dm} \to \gamma\gamma, \bar{f}f, \dots$

$$\frac{d\mathcal{S}_i}{dE} = \alpha (\sigma v_{\rm rel})_{v \to 0} \frac{dN_i}{dE} \frac{\rho_{\rm dm}^2}{m_{\rm dm}^2}$$

 $lpha = rac{1}{2}$ Majorana, real scalar $lpha = rac{1}{4}$ Dirac, compex scalar

Candidates for particle dark matter

Mass-scales and interactions are suggested by

- Theoretical arguments → Various incarnations of WIMPs, Sterile neutrinos, Axions, ...
- Hints in the data → **positron excess**, **511 keV line**, **Fermi GeV excess**, **PeV neutrinos**, ...

Dark matter freeze-out

Boltzmann equation for particles in comoving volume

Origins of velocity dependence

Origin for velocity depends of velocity-weighted annihilation cross-section.

Hard process

Non-relativistic expansion:

$$\sigma v = a + bv^2 + \dots$$

a dominates: s-wave

b dominates: p-wave $(e.g., \chi_1^0\chi_1^0 \rightarrow \bar{f}f)$

Sommerfeld enhancement

Attractive force between initial states → Change in wave function at origin

$$S = \frac{|\psi(0)|^2}{|\psi_0(0)|^2}$$

And: resonances, co-annihilation, ...

For more details see, e.g., Lisanti 1603.03797

Wino dark matter

NUHM2 (Non-universal Higgs mass MSSM)

Parameters: $m_0, m_{1/2}, A_0, \tan(\beta), \operatorname{sgn}(\mu), m_{H_u}, m_{H_d}$

Annihilation cross-section

Spin-dependent scatter

- Again, super-thermal cross-sections get significant contributions from A-full regime
- Other annihilation processes also relevant, rich phenomenology
- We did not yet include radiative corrections, Sommerfeld enhancement etc

GAMBIT, 1705.07935

 $\Omega_{\chi_1^0} \lesssim \Omega_{\rm dm}$

The annihilation channels

Neutrinos

- Geodesics
- Very hard to measure
- Can escape from the core of dense stellar objects

Average energy densities in today's Universe

Distribution of rest DM mass energy

How much energy is dumped into photons, neutrinos, electrons, protons and deuterons depends on the **annihilation channel**.

Leptonic channels

Hadronic channel

Cirelli et al. (2010) "PPPC4DMID"

Final state energy spectra

Annihilation into tau leptons

Annihilation into quarks

Cirelli et al. (2010)

Gamma-ray spectral features

Differential intensity of DM signal photons

Differential signal intensity

$$\frac{d^2 F}{d\Omega dE} = \frac{1}{2} \frac{(\sigma v_{\rm rel})_0}{m_\chi^2} \frac{dN_\gamma}{dE} \times \frac{1}{4\pi} \int_{\rm l.o.s.} dD \ \rho_{\rm DM} (\vec{r}[D,\Omega])^2$$

$$\rho_{\rm DM}^2$$

Differential flux from a region ΔV at distance D.

Differential flux from a region
$$\Delta V$$
 at distance D .

$$\frac{dF}{dE} = \frac{1}{4\pi D^2} \int_{\Delta V} dV \frac{dN_{\gamma}}{dV dt dE} \qquad dV \rightarrow d\Omega D^2 dD$$
Volume emissivity
(see above)
$$\frac{dN_{\gamma}}{dV dt dE} = \alpha \frac{dN_{\gamma}}{dE} (\sigma v_{\rm rel})_0 n_{\chi}^2$$

Dark matter profile

The DM distribution very close (<1kpc) to the Galactic center is observationally only poorly constrained.

Dark matter substructure boosts

$$\langle \rho^2 \rangle_V = B_F \langle \rho \rangle_V^2$$

Relevance of substructure

- Effective contribution depends critically on concentration-mass relation
- Tidal forces diminish subtructure in inner Galaxy
- Usually not sizeable in the inner Galaxy or in dwarf spheroidals
- Largest for massive Galaxy clusters

Some recent work: Moline+ 1603.04057, Okoli+ 1711.05271

Spatial characteristics

Signal is approx. proportional to column square density of DM:

Extended or diffuse:

(for observations with gamma rays)

Galactic DM halo

- good S/N
- difficult backgrounds
- angular information

Extragalactic

- nearly isotropic
- only visible close to Galactic poles
- angular information
- Galaxy clusters?

review on N-body simulations: Kuhlen, Vogelsberger & Angulo (2012)

Point-like:

(for observations with gamma rays)

<u>Galactic center (~8.5 kpc)</u>

- brightest DM source in sky
- but: bright backgrounds

DM clumps

- w/o baryons
- bright enough?
- boost overall signal

Dwarf Spheroidal Galaxies

- harbour small number of stars
- otherwise dark (no gamma-ray emission)

Secondary photons

Various mechanisms can generate photon signals from high energetic electrons and positrons.

Synchrotron emission Radio emission of electrons propagating the Galactic magnetic field

nrumiano

Inverse Compton emission

Up-scattering of the interstellar radiation field (starlight, dust emission, CMB) to GeV energies

Relevant radiation mechanisms

The most common constraints on WIMP DM

Searches in dwarf spheroidal galaxies

Dwarf spheroidal galaxies

- 9 classical dwarfs
- >25 ultra-faint dwarfs around found in recent surveys (SDSS, DES)
- dSphs have very large M/L ratios \rightarrow Completely DM dominated
- Astrophysically inactive \rightarrow no gamma-ray emission expected
- \rightarrow Perfect target for DM annihilation signal searches

"J-values" in the literature

Situation

- Still quite some discussion about J-values in the literature (e.g. Bonnivard+ '15, Geringer-Sameth+ '15, Charbonnier+ '11, Walker+ '11)
- Impact of tri-axiality somewhere around factor 2 (Bonnivard+ '15, Hayashi+ '16)
- Non-parametric approach can reduce J-values by up to factor 4 (Ullio & Valli 2015)
- Still, thanks to combination of sources, limits are arguably the most robust

Fermi LAT limits from dwarf spheroidal galaxies

Combined likelihood limits using data from the Fermi Large LAT, ~0.5 – 300 GeV

At higher energies: Air Cherenkov Telecopes

DM searches with Cherenkov telescopes

- Large CR backgrounds imply that brightest targets are best \rightarrow Go for the GC
- Strongest limits from HESS GC halo observations, recent updates use improved stat. method (HESS 2016)
- Relevant limits at ultra-high-energy gamma rays (m>100 TeV) come from IceCube (Murase & Beacom 2012)

At lower energies: CMB

Bounds on annihilating DM

Energy injection

$$p_{\rm ann}(z) \equiv f(z) \frac{\langle \sigma v \rangle}{m_{\chi}}$$

- Energy injection at z~500 1000 increases free electron fraction
 - → broadening of surface of last scattering
 - \rightarrow less fluctuations at small scales
- Insensitive to details of non-linear structure formation

Bounds on DM from Planck observations

Status

- Bounds depend on effective energy deposition (f_{off}) , otherwise very robust
- Exclude s-wave annihilation below m~10 GeV ٠ unless annihilation into neutrinos dominates

$$\langle \sigma v \rangle \lesssim (1-4) \times 10^{-27} \left(\frac{m_{\chi}}{1 \,\mathrm{GeV}}\right) \mathrm{cm}^3 \,\mathrm{s}^{-1}$$

see also Ali-Haimoud+15; Liu+16; Chluba+16; Cline&Scott 13; Galli+13; Madhavacheril+13

Anomalies

Some signal claims of recent years

Different searches, different challenges

Background modeling complexity

of

Why bothering with indirect searches?

• We have no choice

DM might be easiest to detect via indirect searches (sterile neutrino DM, Wino DM, ...). Would be foolish to not try it as good as we can.

Robust detections are possible

Searches are not as clean as lab experiment, we can just observe and model what we see. However, we have the entire Universe available to test any given signal hypotheses. Not too bad.

 Only approach that probes > 30 order of magnitude in DM mass
 Dark matter particles over a huge range of masses can leave their nongravitational imprints in the sky (from radio to UHECRs).

Instruments come "for free"

Telescopes are seldomly build with the primary goal of detecting particle dark matter. But they usually cover new sensitivity ground. Would be foolish to not exploit them.

Anomalies Anti-protons

Why anti-protons?

2) Backgrounds extremely* well understood

Early papers: Buffington+ 1981; Silk & Srednicki 1984; Stecker+ 1985; Eliis+ 1988; Stecker & Tylka 1989; Bergström+ 1999; Maurin+ 2001; Donato+ 2004; ...

*up to a factor of two
Propagation of messengers from DM

Charged particles

- Diffuse propagation in Gal. magnetic field
 - $r_g \sim 3.3 \times 10^9 \mathrm{m} \cdot E_{1 \mathrm{GeV}}$
- Energy losses can be important
 - SPECTRUM ONLY

Photons & neutrinos

- Propagation along geodesic
 Negligible energy losses or absorption
 - SPECTRUM & MORPHOLOGY

Overview of relevant processes

Propagation universality in rigidity

Kinematics can be described in terms of particle rigidity (momentum per charge):

$$\mathscr{R} = \mathbf{p} c/Z e$$

EoM in electromagnetic field is then: $\frac{1}{c} \frac{d\mathscr{R}}{dt} = \mathbf{E}(\mathbf{r},t) + \frac{\mathscr{R} \times \mathbf{B}(\mathbf{r},t)}{\sqrt{|\mathscr{R}|^2 + \mathscr{R}_0^2}}$ In the relativistic limit, the EoM becomes independent of R₀, and hence on the particle species.

See e.g. Serpico+'15, 1509.04233

Spallation

$$\sigma_r^p \approx \sigma_r^p \approx 40 \text{ mb}$$

 $\sigma_r(A) \approx 250 \text{ mb} (A/12)^{2/3}$

Johannesson+ 2016

See e.g. Serpico+'15, 1509.04233

Most secondaries originate from spallation reactions, which to a good approximation preserve the energy per nucleon, $E/A \sim R/2$.

Surface density of Milky Way

$$10 \,\mathrm{M_{\odot}\,pc^{-2}} \simeq 2 \,\,10^{-4} \,\mathrm{g\,cm^{-2}}$$

Probability for p-p interaction per "diskcrossing": $P(p-p) \sim 10^{-3}$ \rightarrow Many disk-crossings required / propagation within dense regions \rightarrow Interaction time scales of the order >10⁵ yr

Why grammage matters

Leaky box & spectral indices

Diffuse propagation:

$$\frac{dN}{dt} = \dot{Q} - \frac{N}{\tau_p}$$

Diffusion distance

$$\langle x \rangle \simeq \sqrt{6D\tau} \sim L$$

L: Extend of diffusion region

Implied escape time $\tau_p \sim \frac{L^2}{6D}$

Spectrum of primaries:

 $\dot{Q} \propto \mathcal{R}^{-\gamma}$

Source spectrum

$$D \propto D_0 \mathcal{R}^\delta$$

Diffusion parameter

$$N_{\rm prim} \propto \frac{L^2}{D_0} \mathcal{R}^{-\gamma-\delta}$$

Steady state solution

 $N_{
m sec} \propto rac{L^3}{D_0^2} \mathcal{R}^{-\gamma - 2\delta}$

Spectrum of secondaries:

$$\dot{Q}_{
m sec} \propto N_{
m prim}/L$$

$$\frac{N_{\rm sec}}{N_{\rm prim}} \propto \frac{L}{D_0} \mathcal{R}^{-\delta}$$

Conclusions

- Secondary-to-primary ratios probe diffusion parameter slope
- There is a degeneracy between normalization of diffusion parameter and diffusion zone size.

CR propagation illustrated

[excellent review: Lavalle & Salati (2012)]

Most relevant assumption:

- Cylindrical symmetry
- Homogeneous diffusion coefficient

Most relevant parameters:

- Diffusion zone height, L
- Diffusion constant, D

 $R^{-2.2}$

Cosmic ray transport equation

$$D(E) = D_0 \beta (\mathcal{R}/1\text{GV})^{\delta}$$

[see Evoli et al. (2012), and refs therein; Strong, Moskalenko and Ptuskin (2007)]]

Fit to B/C, predictions for anti-protons

Viable parameters for the propagation model: (fit to B/C and p data)

Model	$z_t(\mathrm{kpc})$	δ	$D_0(10^{28} {\rm cm}^2/{\rm s})$	η	$v_A({\rm km/s})$	γ	$dv_c/dz({\rm km/s/kpc})$	$\chi^2_{B/C}$	χ_p^2	Φ (GV)	$\chi^2_{\bar{p}}$	Color in Fig.s
KRA	4	0.50	2.64	-0.39	14.2	2.35	0	0.6	0.47	0.67	0.59	Red
KOL	4	0.33	4.46	1.	36.	1.78/2.45	0	0.4	0.3	0.36	1.84	Blue
THN	0.5	0.50	0.31	-0.27	11.6	2.35	0	0.7	0.46	0.70	0.73	Green
THK	10	0.50	4.75	-0.15	14.1	2.35	0	0.7	0.55	0.69	0.62	Orange
CON	4	0.6	0.97	1.	38.1	1.62/2.35	50	0.4	0.53	0.21	1.32	Gray

Predictions for anti-proton DM signal

Signal flux normalization depends primarily on diffusion zone height.

Anti-protons from AMS-02

Preliminary anti-proton to proton ratio

- Up to 350 GeV Syst. + stat. error bars?
- Compatible with previous results by PAMELA, though with significantly smaller error bars at high energies
- Shown as excess above the expectations from secondary production (ICRC 2015: "Theoretical prediction based on pre-AMS knowledge of cosmic ray propagation")

Samuel Ting

No clear excess above secondary backgrounds

Anti-proton limits and signal hints

Simple propagation scenarios are insufficient to explain *all* CR data (and DM does not help) → Extraction of reliable limits or signal becomes a huge challenge

See also: Winkler+ 17; Carlson+14; Cirelli+14; Jin+15; Ibe+15; Hamaguchi+15; Lin+15; Kohri+15; Balazs&Li15; Doetinchem+15; Fornengo+13

Reanalysis of cross-sections

Reinart & Winkler 2017

- Refitting nuclear spallation data for Boron production from Carbon, Oxygen, Nitrogen, ...
- Charge-dependent solar modulation
- Refitting primary cosmic ray measurements (including obseved hardening at high energies)
- Positron flux to provide lower limit on diffusion zone height
- Full incorporation of covariance matrix

Best-fit B/C and antiproton spectrum

- Combined fit to B/C and pbar data provides statistically good fit without extra components
- Significance of additional DM signal is down below 2 sigma

Best Fit	${ m B/C} \ { m (w/o\ break)}$	${ m B/C} \ { m (w/\ break)}$	$ar{ m p} \ ({ m w}/{ m break})$	$\frac{\rm B/C + \bar{p}}{\rm (w/\ break)}$
$K_0 \left[\frac{\mathrm{kpc}^2}{\mathrm{Gyr}}\right]$	$39.6 \cdot L_{4.1}$	$34.3 \cdot L_{4.1}$	$39.5 \cdot L_{4.1}$	$32.5 \cdot L_{4.1}$
δ	0.479	0.507	0.446	0.506
$V_a \left[\frac{\mathrm{km}}{\mathrm{s}}\right]$	0	0	$59.7 \cdot \sqrt{L_{4.1}}$	$15.6 \cdot \sqrt{L_{4.1}}$
$V_c \left[\frac{\mathrm{km}}{\mathrm{s}}\right]$	0	1.3	0	0
$\Delta\delta$	¥	0.157	0.157	0.157
\mathcal{R}_b [GV]	brea	275	275	275
s	η_0	0.074	0.074	0.074
$\phi_0 \; [\text{GV}]$	0.72	0.72	0.72	0.72
$\phi_1 \; [\text{GV}]$			0.66	0.84
$\chi^2_{\rm B/C}$ (67 bins)	64.2	48.0		55.1
$\chi^2_{\bar{p}}$ (57 bins)			21.3	47.9
$\chi^2_{\rm AMS/PAM}$ (17 bins)			10.9	12.6

Method can be used to obtain strong DM upper

Anomalies Fermi GeV excess

"Fermi GeV excess"

Five years of Fermi LAT data >1GeV

- Initial claims by Goodenough&Hooper (2009) [see also Vitale&Morselli (2009)]
- Controversial discussion in the community for six years
- In 2015, existence of "GeV excess" finally got the blessing of the Fermi LAT collaboration
- Is it a DM signal?

... Hooper & Linden 11; Boyarsky+ 11; Abazajian & Kalpinghat 12; Hooper & Slatyer 13; Gorden & Macias 13; Macias & Gorden 13; Huang+ 13; Abazajian+ 14; Daylan+ 14; Zhou+ 14; Calore+ 14; Huang+15; Cholis+ 15; Bartels+ 15; Lee+ 15, ...)

Literature overview

Papers that looked at data

- Goodenough & Hooper, arXiv:0910.2998
- Vitale & Morselli, 2009
- Hooper & Goodenough, Phys. Lett. B697 (2011) 412
- Hooper & Linden, Phys. Rev. D84 (2011) 123005
- Boyarsky, Malyshev & Ruchayskiy, Phys. Lett. B705 (2011) 165
- Abazajian & Kaplinghat, PRD 86 (2012) 083511
- Hooper & Slatyer, Phys. Dark Univ. 2 (2013) 118
- Gordon & Macias, Phys. ReV. D88 (2013) 083521
- Macias & Gordon, PRD 89 (2014) 063515
- Abazajian, Canac, Horiuchi, Kaplinghat, Phys. Rev. D90 (2014) 023526
- Cholis, Evoli, Calore, Linden, Weniger, Hooper, JCAP 1512 (2015) 12
- Calore, Cholis & Weniger, JCAP 1503 (2015) 038
- Zhou, Liang, Huang, Li, Fan, Chang, Phys. Rev. D91 (2015) 123010
- Gaggero, Taoso, Urbano, Valli & Ullio, JCAP 1512 (2015) 056
- Daylan, Finkbeiner, Hooper, Linden, Portillo et al., Physics of Dark Universe 12 (2016) 1
- De Boer, Gebauer, Neumann, Biermann, arXiv:1610.08926 (ICRC 2016 proceedings)
- Huang, Ensslin & Selig, JCAP 1604 (2016) 030
- Carlson, Linden, Profumo, Phys. Rev. D94 (2016) 063504
- Bartels, Krishnamurthy, Weniger, Phys. Rev. Lett. 116 (2016) 5
- Macis, Gordon, Crocker, Coleman, Paterson, arXiv:1611.06644
- Lee, Lisanti, Safdi, Slatyer, Xue, Phys. Rev. Lett. 116 (2016) 5
- Ajello et al. 2016, Astrophys. J. 819, 44
- Ackermann et al., 2017, Astrophys. J. 840, 43
- Ajello et al., 2017, arXiv:1705.00009 (+ a few that I must have missed)

Excess is likely DM Excess is there Excess is likely not DM Excess is not there

+ hundreds of DM theory papers

Emission profile

Calore+15, Charles+16

Comparison with dwarfs

Charles+ 2016

Most analyses are based on template regression

Free parameters: $N_{\text{params}} = N_{\text{ebins}} \times N_{\text{comp}}$

How to get the templates

1) Inject primary CR at sources Carlson+ 2015

2) Propagate them with the code of your choice

3) Interaction with gas & ISRF

Possible contributions to bulge emission

Expected contributions

- Star formation (Gaggero+ '15, Carlson+ '15)
 - GeV excess: 1e37 erg/s
 - 1 SN (1e51 erg) per 100 yr, 10% in GC, 10% into CR, 1% into leptons

 \rightarrow few 1e37 erg/s \rightarrow enough to power GeV excess

- Bubble-related emission (very hard to model)
- Young pulsars (can be reasonably modeled, O'Leary+ '15)
- <u>Millisecond pulsars</u>* (spectrum expected to bump at GeV energies, but not clear how many, how distributed, etc; Abazajian 11; Brand & Kocsis 15)

Speculative contributions

- <u>Dark matter annihilation*</u> (spectrum not exactly known but can bump at ~GeV energies, not clear how strong signal, what shape)
- Past activity of central black hole (cooling effects might in principle explain the observed peaked spectrum; e.g. Cholis+15; Petrovic+13)

*predict extended quasi-diffuse uniform spectrum

Millisecond pulsars for the GeV excess

Why?

- Fermi GeV bulge emission could be due to combined flux from thousands of bulge MSPs [Abazajian '11; Petrovic+ '13; Brand & Kocsis '15]
- Required number density and spherical distribution possibly created from disrupted globular clusters

For a list of possible caveats (e.g. pulsar aging) see e.g. Hooper+'13, Cholis+'14, Linden & Hooper '16

An observational challenge

A signal composed of point sources would appear more "speckled" than a purely diffuse signal (like from DM annihilation)

(Credit: Lee+ 2014)

Wavelet transform to filter out point sources

Mexican hat wavelet

Credit: https://www.researchgate.net

Our work: Wavelet fluctuation analysis (Bartels+15 PRL)

Wavelet approach is robust and simple

- No background modeling required for wavelet analysis (separation of scales!!!)
- Build-in source localization
- Extremely fast (allowed careful Monte Carlo tests of the results)

See also Lee+15 for an analysis using non-Poissonian noise

Wavelet transform of inner Galaxy data

1) Count peaks in different sky regions and bin them according to significance

- 2) Run MCs for different bulge population configurations
- 3) Compare using a Poisson likelihood
- 4) Study all kinds of systematics (foreground sources, gas fluctuations etc)

Histogram of wavelet transform peaks

We find

- Suppression at <2 sigma
- Excesses at >3 sigma

Blue bars: Null hypothesis (diffuse only emission) Black: Measured data

Red: best fitmodel with PSC population in bulge

Strong support for MSP hypothesis

Results

- For a luminosity function index around 1.5, a MSP population with the best-fit normalization would reproduce 100% of the excess emission
- The best-fit cutoff luminosity is compatible with gamma-ray emission from detected nearby MSPs (beware of large uncertainties due to uncertainties in the distance measure, Petrovic+ 2014, Brandt & Kocsis 2015)

Relevant gamma-ray source classes

Extragalactic sources

• Unlikely (at >5sigma leve) that extragalactic source density is peaked sufficiently towards inner Galaxy

Supernova remnants and PWN

- Very rare at |b|>2 deg
- Not peaked towards inner Galaxy (usually more closeby)
- Usually detected at other frequencies first

Young pulsars and MSPs

- Peak in selected energy range (by design)
- Detected (radio) pulsars do not peak towards the inner galaxy

Globular clusters

• Emission will be approximately the combined emission of many pulsars

Unassociated sources

• At higher latitudes, large fraction is expected to be young and millisecond pulsars

We expect that wavelet signal is dominated by whatever source class (except EG) is responsible for the majority of the unassociated sources in the inner galaxy. Spherical distribution more plausible for MSPs than for young pulsars → MSPs the (by far?) most likely interpretation

Gas fluctuations etc unlikely to cause signal

Small scale feature in gas

 Even assuming that all diffuse emission comes from gas, we predict a non-detection (Schlegel+97 with ~0.1 deg resolution; Planck optical depth map)

Check out extensive appendix of Bartels+16 for more details.

Yes, but...

NONE of the diffuse emission models gives an acceptable fit to the data

1. Even the best models are excluded by many hundred sigmas

Goodness-of-fit tests typically return **p-value < 10⁻³⁰⁰**

2. Many excess along the Galactic disk

Some of the excesses have same size as Galactic center excess (Calore+15)

3. "Bracketing uncertainties" by looking at many wrong models does not give the right answer

But everybody is doing it.

Model parameters

We need better models and/or massively enlarge the parameter space.

Accounting for systematics with SkyFACT

SkyFACT (Sky Factorization with Adaptive Constrained Templates)

Based on penalized likelihood estimation

Storm, CW, Calore, 2017

Hybrid between template fitting & image reconstruction

Data and templates

Residuals ~2 GeV

Residuals ~ 6 GeV

Dark gas corrections

- Fraction of gas neither emits CO (molecular gas) nor 21 cm line (atomic gas)
 → Not included in gas maps
- Correction factors are usually derived by considering dust reddening maps (assuming that dust is well mixed with ISM)

Low-latitude Fermi bubbles

Low-latitude part of Fermi bubbles is not well studied

- However, a MSP component + bubble component (hard spectrum) decomposition is possible
- Suggests strongly enhanced HE emission in the inner few degrees
- ICS from star formation?
- However, statistically not very significant, hard to study

Ackermann+17

Using stellar mass distribution as templates

Longitude profile

- Bubble component is clearly displaced from center
- Shape quite different from contracted NFW, but hard to determine within disk

Emission scales with stellar mass

- This supports the idea that the GeV excess is of stellar origin, i.e. generated by objects that are distributed like the majority of bulge stars
- Association with boxy bulge might disfavour production via disrupted globular clusters, but needs further study

Previous searches & current situation

Radio searches:

- Observations since 1980s (mostly Parkes, Arecibo), since 2002 GBT
- Today*: ~370 MSPs (~240 field, ~130 in globular clusters) [e.g., Stovall+13]
 - From surveys (e.g. Parkes HTRU)
 - From deep observations of globular clusters
 - From radio follow-ups of Fermi LAT sources (~70 MSPs) [Ray+12]
- MPS searches at the Galactic center are very hard [Marcquart & Kanekar 15]

*As of Jan 2016

Gamma-ray searches:

- Discovery of numerous gamma-ray MSPs came as surprise, but now well established (Abdo+10)
- MSPs usually appear as unassociatd sources in Fermi LAT data (spectral curvature, non-variable)
- Follow-up searches required to (1) discover associated radio pulsation and (2) fold ephemerides back into gamma rays
- At least one MSP found by blind search for gamma-ray pulsation alone

For a review see Grenier & Harding 15

[Abdo+ 2013, 2nd Fermi Pulsar catalog]

Modeling MSP bulge population

Density of radio-bright MSPs

• We use six **globular clusters** observed in gamma rays (Ter 5, 47 Tuc, M 28, NGC 6440, NGC 6752, M 5) to estimate expected radio emission of bulge population

$$\frac{L_{\gamma}^{\text{stacked}}}{N_{\text{rb}}^{\text{stacked}}} = (1.0 \pm 0.3) \times 10^{34} \,\text{erg}\,\text{s}^{-1}$$

- Fully takes into account beaming effects
- Radio-bright (here): $L_{1400} > 10 \mu Jy$
- $L_{\gamma}^{\text{bulge}} = (2.7 \pm 0.2) \times 10^{37} \, \text{erg s}^{-1} \longrightarrow N_{\text{rb}}^{\text{bulge}} = (2.7 \pm 0.9) \times 10^3$
- Luminosity function from Bagchi+11

Spatial distribution

- Assumed to follow observations of GeV bulge emission as seen be Fermi
- Volume emissivity follows inverse radial power law

$$\frac{dS}{dV} \sim r^{-2.5}$$

Calore, Di Mauro, Donato, Hessels, CW 2016

Modeling the radio properties of bulge MSPs

Modeled pulsars in x-y plane

• Predict enhancement of MSP density by several orders of magnitude in the Galactic bulge w.r.t disk

Surface density of radio-bright bulge MSPs

 Varies from ~100 deg⁻² to ~1 deg⁻², depending on the distance from the GC.

Earth

Sensitivity calculations

Radio-meter equation for pulsar searches

$$S_{\nu,\rm rms} = \frac{T_{\rm sys}}{G\sqrt{t_{\rm obs}\,\Delta\nu\,n_p}} \left(\frac{W_{\rm obs}}{P - W_{\rm obs}}\right)^{1/2}$$

We require 10 sigma signal for "detection"

Observational challenges

- Varying sky-temperature (~5-50 K @ 1.4GHz; extrapolated from Haslam 408 MHz map)
- Intrinsic pulse width (~10%) smeared out by various effects
 - Temporal smearing due to scattering on the ionized ISM
 - Dispersive smearing across individual frequency channels, data sampling, DM step size in search
- Uncertainties in the DM (here taken from NE2001 model)
- About ¾ of field MSPs are found in binary systems → Orbital motion has significant impact on blind searches

Planned radio searches for bulge MSPs

Radio detection prospects (Calore+ '15) All bulge MSPs SKA-mid 10 (Bulge population is just below sensitivity of Parkes HTRU GBT SKA-mid, $2^{\circ} \times 2^{\circ}$ mid-lat survey) MeerKAT HTRU Mid $DM = 300 \text{ pc cm}^{-3}$ GBT targeted searches ~100h: ~3 bulge MSPs 10 MeerKAT mid-lat survey ~300h: ~30 bulge MSPs S1400 [mJy] 10^{-} Our plans for the near future • We teamed up with MeerKAT TRAPUM \rightarrow plans for $\stackrel{\scriptstyle 4}{=}$ dedicated survey in ~2019! Radic 10^{-3} $18^{\circ} \times 18^{\circ}$ Bulge MSPs (2.9) (3.0) Disk MSPs 10^{-4} $|\ell| < 2^{\circ}, 3^{\circ} < |b| < 7^{\circ}$ Calore+ '15 Detections Bulge 10^{0} 10^{1} Period, P [ms] MeerKAT Thick disk (2.9) (3.1) (2.6) (3.0)Distance (from (SKA) dispersion measure)

Anomalies X-ray line

Sterile neutirnos

- Right-handed neutrino is neutral – no electromagnetic interactions
- Right-handed neutrino is a lepton – no strong interactions
- Weak interactions are different for left- and rightparticles – right-handed neutrino is sterile

Sterile neutrino Dark Matter

Upper-right limits from X-ray line searches

 $\theta_{\alpha i}$

The 3.5 keV line

Compared to 130 GeV line, fluxes of 3.5 keV excesses look reasonably constistent with vanilla DM expectations.

Perseus cluster

Overview

- Nearby, z~0.0176, cool core cluster with AGN at center
- Observed by: Chandra (1.5 Ms on NGC1275), XMM-Newton (0.5/0.2 Ms), Suzaku
- Analyses: Boyarsky+14, Bulbul+14, Carlson+, Urban+, Franse+16, Tamura+

Bulbul+14:

Perseus center (XMM, MOS) Perseus center (Chandra, ACIS-S) $\Delta \chi^2 = 11.8$ Perseus center (Chandra, ACIS-I) $\Delta \chi^2 = 6.2$ 2.5 σ for 1 d.o.f.

 $\Delta \chi^2 = 12.8$ 3.1 σ for 2 d.o.f. 3.0σ for 2 d.o.f.

The possible role of charge exchange emission

Charge exchange interaction

Relevant everywhere were ionized gas meets neutral medium

- Earth magnetosphere
- Anywhere in the heliosphere
- Effects apparent in uncleaned ROSAT data, proportional to solar activitiy
- Standard QM, line positions known, rates sometimes expensive to calculate

Fully ionized sulfur + Hydrogen

Set-up

- At v~200 km/s, most interactions end up in Rydberg level n=9.
- Produces line around 3.45 keV
- Neutral gas penetrating ionized plasma can give rise to line emission

Could account for Perseus observations

S XVI charge exchange line can account for part of the 3.5 keV, provided contributions from neutral and ionized material are sufficient.

Gu et al., 2015

Hitomi observations of Perseus

Hitomi 2016 legacy

- First-light observations of Perseus cluster
- Bulbul "all cluster" signal not bright enough
- But XMM MOS observations of Perseus were brighter, could be excluded at >99% CL
- Hints for S XVI line complex charge exchange?
- DM line would be Doppler broaded, harder to detect

Chandra deep-field observations

Cappelluti+ 2017

- Target ROIs are ~110 deg away from Galactic center
- Bayesian analysis reveals ~3 sigma detection
- 3.51 +- 0.02 keV, compatible with expectations from MW halo
- However, S/B is about 2%

Stacking analysis of nearby galaxies

Anderson+14

- 81 Chandra and 89 XMM-Newton galaxies
- Centers masked, reweighting technique for S/N per pixel
- Bkg modeling using splines, huge variations, but extending over somewhat larger energies than line
- Method could be confirmed with spline fit of "OFF region"
- Limits are often discarded because of unconventional background treatment. However, not clear what should be wrong.

Draco observations with XMM-Newton

Draco campaign with XMM-Newton

- 1.5 Ms observation time in 2015
- Jeltema & Profumo '15: Claim they can exclude Bulbul line @ 99% CL. But analysis technique is somewhat problematic (rather simple BG model, problematic statistics)
- Boyarsky+ '15: Weak hint for line from MOS, lower than expected

 \rightarrow sterile neutrino interpretation disfavored

Line position [keV]

Galactic center observations with NuSTAR

Situation

- Energy range of NuSTAR: 3-79 keV
- 6 GC observations (inner few deg), ~0.5 Ms combining both detectors

But: Highly significant *unidentified* 3.51 keV line is part of background model \rightarrow Will be investigated futher by instrument team

Perez et al., 2017

Not the first of its kind: 511 keV, 130 GeV, 1.4 TeV

130 GeV line in

- GC & inner galaxy
- Stacked gal. Clusters
- Unassociated Fermi sources
- The Sun (5 deg radius)
- Earth limb (control region)
- Always ~3-5 sigma
- Disappeared with more data

→ Line could not be reproduced with more data after ~2013. Statistical fluke (+instr. ?) In comparison, 3.5 keV line aged quite well. Situation remains unclear.

Ways forward

Plans for the upcoming years

- Micro-X Sounding rocket with micro-calorimeter, 2019?
- XARM (Hitomi-II), 2021?
- Athena, 2029?
- E-ROSITA, full-sky coverage (half Russian, half German)
- Archived: Mapping DM with MW halo Chandra data
- Archived: Reanalysis of stacked galaxies?

Velocity spectroscopy

Future missios with micro calorimeter (Micro-X, XARM)

- 1e-3 resolution → Typical MW velocities (~100 km/s) become important
- Gas emission redshifted in +lon
- DM emission blue shifted in +Ion
- 2 Ms Hitomi/XARM observation \rightarrow 5 sigma detection

Credit: Kenny Ng

Information flux

The forecasting bottle beck

Problem:

- How to identify minimum set of necessary searches to cover *all* possible DM models?
- How to make forecasting easy and informative?

Solution:

• Fisher forecasting on the rocks

S/N + systematics = Information flux

Dark information flux – DM annihilation

A toy example: Galactic halo vs nearby galaxies

Galactic halo dominates

Statistics only

Background

Here: 10% with ~10 deg correlation length

1/100 x Fermi LAT exposure

Can be used to calculate

- projected upper limits
- discovery thresholds
- reconstruction contours
- in the Poissonian regime
- no Monte Carlos

M31 as relevant as GC

Fermi LAT exposure

Edwards & Weniger, 1712.05401

http://www.github.com/cweniger/swordfish

Outlook

Instrumental panorama – Photons*

Future for WIMPs

Radio searches for axion DM

know variation of Galactic Bfield at meter scale...

$$\Gamma \propto \left| B(k=m_a) \right|^2$$
DM searches at IR/Optical/UV frequencies

The eV gap $(10^{-3} - 10^2 \text{ eV})$

- Decay of axion-like particle DM could in principle give signals in that range
- Weak broad-band constraints come from extragalactic background light (EBL)
- Dedicated search for decaying DM signals in Abell 2667 only at optical frequencies (Grin+ '06)

Future

- DM theory challenge: any other DM signals predicted/possible in this frequency range?
- Dedicated analyses of archived data in this range might improve existing limits significantly

Image

Lensing mass map

Grin+06

The "MeV gap"

Searches for DM with a future dedicated ~MeV mission could improve existing limits by many orders of magnitude.

Bartels+17 (PRD)

Radio searches for synchrotron emission from DM

e^{\pm} from DM annihilation/decay + B-field \rightarrow Synchrotron radiation

Radio searches for dark matter

- Dark matter annihilation/decay into leptons gives rise to synchrotron emission
- Signal strength depends on magnetic fields \rightarrow additional, often large, uncertainty for signal flux
- Current limits from dSph and M31 (e.g. ATCA, VLSS, WENSS, NVSS, GB6) are potentially comparable to Fermi dwarf limits, but (much) less robust

Instr. panorama - Neutrinos & Cosmic Rays

General AntiParticle Spectrometer (GAPS)

Funded by NASA & JAXA. First flight planned for ~2020.

→ Searches for **anti-deuterons**

X-ray

weight: 1700kg

power: 1.4kW (Si(Li) 600W, TOF 400W)

Conclusions

Thank you!

Backup slides

Overview

Florian Hofmann - Lorentz Center workshop, Leiden, 2018

e-ROSITA

1 deg^2 FOV, similar eres. XMM, 4 yr scan mode, 60 eV resolution @ 3.5 keV (?) Aeff is half of XMM @ 3.5 keV

Pointed observations after 4yrs?

e-ROSITA

Note: We average over 200 eV bins around line \rightarrow true sensitivity could be higher by factor of few

Zandanel, Ando, CW, 2015

Formalism: Why signal-to-noise?

Problems with plain wavelet transforms:

• **Peaks in the wavelet transform** correspond usually point source (if they are bright enough).

- The wavelet transform is a measure of the source flux
- Problematic aspects
 - Steep gradients in astrophysical backgrounds → Sources with same flux are detectable far from the disk but not close to the disk
 - Even worse: 1,2,3,...-sigma fluctuations will correspond to different flux levels in different regions of sky →
 Null hypothesis (no PSCs, only diffuse background) has very complicated characteristics in wavelet space
- Idea: Look at signal-to-noise instead of fluxes!

Formalism: Signal-to-noise ratio

One can show that the variance of the wavelet transform

$$\mathcal{F}_{\mathcal{W}}[\mathcal{C}](\mathbf{\Omega}) = \int d\mathbf{\Omega}' \, \mathcal{W}(\mathbf{\Omega} - \mathbf{\Omega}') \, \mathcal{C}(\mathbf{\Omega}')$$

is given by

$$\operatorname{Var}(\mathcal{F}_{\mathcal{W}}[\mathcal{C}](\Omega)) = \langle \mathcal{F}_{\mathcal{W}^2}[\mathcal{C}](\Omega) \rangle$$

The signal-to-noise of the wavelet transform is then just given by:

$$\mathcal{S}(oldsymbol{\Omega}) = rac{\mathcal{F}_{\mathcal{W}}[\mathcal{C}](oldsymbol{\Omega})}{\sqrt{\mathcal{F}_{\mathcal{W}^2}[\mathcal{C}](oldsymbol{\Omega})}}$$

On approximately isotropic fluxes, with variations at length scales much larger than the wavelet transform kernel, S behaves (approximately) like a smoothed Gaussian random field with variance one → Simple behavior in absence of point sources!

X-shaped excess?

Macias+ 16, WISE template vs excess emission

Morphology of the Fermi GeV excess

- Some studies (e.g. Macias+ 16) found that the GeV excess emission can be better described by an "X-shaped" bulge
- X-shapes are seen in other galaxies, related to boxy bulge
- X-shapes can be generated as projection of stable circular & oscillating (z direction) orbits
- However, we found no indication for an Xshaped excess (next slides)

Acero+16 residuals