Experimental Techniques to Search for Dark Matter throughout the Range of 10meV < M_{DM} < 10 GeV

Matt Pyle UC Berkeley AIT DM School 18/02/18

Design Drivers for 10 meV < M_{DM} < 10 GeV

- Sensitivity to tiny excitations / tiny energy
- Very small dark count rate (Poissonian)
- Exposure: 1 kgyr
- Radioactive: 1 evt/kgdkeV

Calorimeter Sensitivity Detector Physics 101

Calorimeter Sensitivity

Calorimeter Optimization

$$\sigma_{\langle E \rangle}^2 = Ck_b T^2$$

- Minimize T
 - Dilution Refrigerators can cool detectors to 5mK
- Minimize C
 - Small Volume
 - Low T } Freeze out
 - Insulators

Shouldn't this be a solved problem?

Engineering Blunder: Decoupling between the Sensor and Absorber

Excitation Detectors & Volume Scaling

Will these detectors have the same energy sensitivity? Yes, if:

- Lifetime of the athermal excitation (photon) is really long
- Excitation absorption dominated by sensor
- Position Sensitivity

Athermal Phonon Sensors

- Collect and Concentrate Athermal Phonon Energy into small volume W TES
- We're collecting 4K phonons (e⁻phonon coupling still huge)
- Athermal Phonons have very long lifetimes!

Phonon Signal Bandwidth in SuperCDMS

Transition Edge Sensor: Dynamics

Transition Edge Sensor: Noise

DC noise scales with G

Bandwidth Optimization and Tc³ Sensitivity Scaling

• When $u_{sensor} <
u_{signal}$, Energy Sensitivity scales as Tc³

• Design Goal: $\nu_{sensor} = \nu_{signal}$

Optical Phonon Sensitive Detector

- SuperCDMS just smaller: 1kg -> 1g
 - Athermal phonons have small probability to thermalize at the crystal surface.
 - Keep fractional sensor coverage at ~1% (more setu)
 - Smaller crystals -> Less phonon sensors

Step 1) Making An Ultra-Sensitive TES

- Build and test simple TES test structures for noise is performance
- $\sigma_{\langle E \rangle}^2 = Ck_bT^2$
 - small volume TES more sensitive to both DM and environmental backgrounds (RF and vibrations)
- Tc =68mK (a bit high)

50um x200um TES Characterization

TES Power vs TES Bias Voltage

Time (µs)

50um x200um TES Noise

Some Weirdness: SuperCDMS Noise

Luke-Neganov Charge Amplification

Interaction Products in Semiconductors

Nuclear Recoils (NR)

- 8% e⁻/h⁺
- 92% phonons Electron Recoils (ER)
 - 25% e⁻/h⁺
 - 75% phonons

Luke-Neganov Phonon Production In Recoils

• Drifting charges release kinetic energy via Luke-Neganov Phonon Production

$$E_{total} = E_{recoil} + E_{luke}$$
$$= E_{recoil} + Qe\Delta V$$

•

Luke-Neganov Ionization Amplifier

 $E_{total} = E_{recoil} + E_{luke}$ $= E_{recoil} + Qe\Delta V$

$$\lim_{\Delta V \to \infty} E_{total} \propto Q$$

At high voltage

- Bad: No ER/NR discrimination through Ionization Yield
- Good: You've made a phonon amplifier for charge

Preferential Stretching of Electronic Recoils

$$E_{total} = E_{recoil} + E_{luke}$$

$$= E_{recoil} + Qe\Delta V$$

$$= E_{recoil} \left(1 + \frac{Ye\Delta V}{\langle E_{eh} \rangle}\right)$$

Since Electronic Recoils (ER) have
larger Ionization Yields than
Nuclear Recoils (NR), they have
larger Luke Neganov Gain

$$U_{b}^{0} = 0V$$

$$U_{b}^{0} =$$

If you have phonon sensitivity to spare, this is great!

ER/NR Stretching: The Single e⁻/h⁺ Limit

- $\sigma = 5 eV_t$
- Single e⁻/h⁺ Sensitivity
- ER/NR Discrimination

$$E_{total} = E_{recoil} + E_{luke}$$
$$= E_{recoil} + Qe\Delta$$

Problem #1: Charge Breakdown

- Luke's very first attempt saw significant charge breakdown at a certain E-field ☺
- We see this too in SuperCDMS. E-field at which this breakdown occurs varies rapidly between detectors (20 V/cm – 400 V/cm)

Problem #2: Low E-field Dark Current

- Unlike Luke, We see a dark current below the charge breakdown threshold
- Huge variation between detectors 1e-12-1e-15A
- Luke-Neganov Noise Dominates Phonon Sensor Sensitivity.
- Strange: Dark Current nearly independent of E magnitude (IR?)
- We need to understand and mitigate!

Go Small! 1g HV R&D detectors @ Stanford

4mm x 1cm x 1cm Si crystal, 20 kohm-cm

Front Pattern:

- 2 TES channels, inner and outer
- Tc ~51 mK
- QET design between Soudan iZIP and SNOLAB HV
- Grounded

Back Pattern:

- "Parquet" pattern, electrode allows light through
- Biased (+/-) relative to fridge ground

Measuring phonons only!

Romani et. al. 2017 (https://arxiv.org/abs/1710.09335)

Experimental Setup

Laser Excitation System:

- Ran fiber from 300 K to sample stage, illuminates crystal backside
- Berkeley Nucleonics laser pulse system, 650 nm photons, pulse widths > 10 ns
- Trigger on the laser pulse
- Standard Si physics:
 - > 1.9 eV per photon
 - > 1.2 eV to e-h pair
 - > 0.7 eV prompt phonons
 - Get full 1.9 eV of phonons back at sensor
- Studied Luke gain under a variety of bias conditions

Romani et. al. 2017 (https://arxiv.org/abs/1710.09335)

First observation of single e⁻h⁺ pair (Si)

Dark Current: Initially Dominated by above gap IR

- Initially, Significant change in dark current rate.
- Improved experimental setup until above gap IR not dominant
- Warning: this doesn't mean that light leaks aren't still an issue!
- Just upgraded setup
 - multimode fiber -> single mode
 - 2. IR filters in cryostat
 - 3. IR absorber surrounding crystal

Dark Current

- isn't peaked!
- is independent of E-field magnitude

Possible "Bulk" Dark Current Production

"Surface Leakage"

- Above gap IR/optical
- Surface Tunneling

Subgap IR Photon Excitation of Impurity Autoionization Excitation of Impurity

Adsorption Amplification

Superfluid He

- Superfluid He: Many Long Lived Excitations
 - D. McKinsey, S. Hertel,
 HERON (G. Seidel, H. Maris,
 ...), K. Zurek, T. Lin
 - Photons & Triplet Excimers: ~ 18 eV
 - Phonons & Rotons: 1 meV
 - x10 gain due to adsorption on bare surface
- Excitation Detector
 - Bounce until they are collected by the sensor

Amplification Through Adsorption

- ~x10 gain due to adsorption on bare surface
- Dark Count Rate ... naively dark count free

Phase Transition Amplification

Magentic Bubble Chambers

- Prepare a magnet in a non-equilibrium state with spin anti-aligned to external B-field.
 Energy from dark matter interaction heats the magnet and flips the state releasing lots of energy
- Bunting, Gratta, Melia, Rajendran 1701.06566

Conclusions

- Direct Detection of 10meV < M_{DM} < 10 GeV requires
 - Energy sensitivity
 - Detector Backgrounds / Dark count rates small
 - Exposure & Radiogenic Background requirements relaxed compared to high mass WIMP searches
- Athermal Phonon sensor technology
 - 10meV<M_{DM}<6 GeV
 - Potentially dark count free
 - Potential path to vast improvements in energy sensitivity
- Luke-Neganov Amplification
 - Single e/h pairs now seen!
- Phase Transition Amplification

Backup

Photon Detector Preliminary Design

.

.

Property	Value	Description
Asi	45.6 cm^2	Absorber Area
M_{Si}	10.6 g	Absorber Mass
T_c	60 mK	W TES Transition Temperature
T _{bath}	20 mK	Bath Temperature
n _{tes}	1185	# of TES in parallel
htes	40nm	TES film thickness
l _{tes}	$140 \ \mu m$	TES length
Wtes	$1.3 \ \mu m$	TES width
R _{otes}	$100 \text{ m}\Omega$	Operating Resistance
G	55 nW/K	Thermal Conductance
\mathbf{P}_o	6.5 pW	TES Bias Power
$\sqrt{S_{ptfn}}$	$7.3 \mathrm{x} 10^{-18} \mathrm{W} / \sqrt{hz}$	Thermal Fluctuation Noise
\dot{C}_{tes}	420 fJ/K	TES heat capacity
ω_{sensor}	4.12 kHz	sensor bandwidth
l_{fin}	$200 \ \mu m$	Al collection fin length
l_{diff}	$340 \ \mu m$	quasi-particle diffusion length
A_{fin}	$16.2 \text{ x} 10^4 \mu \text{m}^2$	collection fin area per TES
€	48%	Phonon collection efficiency
$\omega_{collect}$	8.49 kHz	Phonon collection bandwidth
σ_p	2.2 eV	Estimated Phonon Resolution

Superfluid He Detector

- D. McKinsey (1302:0534)
- Superfluid He: Many
 Long Lived Excitations
 - Photons & Triplet
 Excimers: ~ 18 eV
 - Phonons & Rotons: 1
 meV
- Photon Detection
 Requirements: Large
 area, high QE, Single
 Photon Sensitivity

Pushing the Limit?

- How many bounces before an athermal phonon down converts?
- How much time before anharmonic downconversion in the bulk?

- If TES bandwidth engineering correctly done, these questions set the TES volume / fin collector size
- Is meV scale sensitivity possible?
 Are keV < M_{DM} < MeV detectors possible?

Why So Large: Vibrational Noise!

Toggle CryoCooler ON/OFF

- Threshold: $12\sigma_{pt} \rightarrow 7\sigma_{pt}$ (?)
- σ_{pt:} 340eVt → 90eVt
- Caveats:
 - Study done at OV
 - Trigger vs Analysis Threshold

Vibrations from the cryocooler produce high frequency phonons within our detectors which look like real events.

Phonon Signal Bandwidth

Transition Edge Sensor: Dynamics

 $\nu_{signal} << \nu_{sensor}$

Transition Edge Sensor: Noise

DC noise scales with G

Bandwidth Optimization Rule $\nu_{sensor} < \nu_{signal}$

49

SINSEI/DAMIC: Meets Single e⁻/h⁺ Sensitivity

SINSEI/DAMIC: Dark Current

Dark Current: < 10-3 e/d/pixel (arXiv:1611.03066)

	Number of DC events (100 g y)		
Thr /e	$DC = 1 imes 10^{-3} \text{ e pix}^{-1} \mathrm{day}^{-1}$	$DC = 10^{-5} \text{ e pix}^{-1} day^{-1}$	
1	1×10 ⁸	7×10 ⁵	
2	2×10 ⁴	0.2	
3	3×10 ⁻²	3×10 ⁻⁸	

