Design Drivers for Dark Matter Searches

Matt Pyle UC Berkeley AIT DM School 18/02/18

Plan

- Briefest Theoretical Overview Ever!
- Interaction Processes and Experimental Design Drivers for Direct Detection
 - WIMPs: 10 GeV < M_{DM} < ~10 TeV
 - $-100 \text{ MeV} < \text{M}_{\text{DM}} < 6 \text{ GeV DM}$
 - $-1 \text{ MeV} < M_{\text{DM}} < 100 \text{ MeV DM}$
 - $-10 \text{ meV} < M_{\text{DM}} < 1 \text{ MeV DM}$
 - Ultralight DM: $M_{DM} < 10 \text{ meV}$

Today: Dark Matter Mass Parameter Space

- Assymetric Dark Matter Kaplan, Zurek et al: 0901.4117
- Freeze In Hall, et al: 0911.1120
- ELDER (Elatically Decoupling Relic) Kuflik et al 1512.04545
- Velocity dependent annihilation rates
- Excited State dependent annhiliation rates

US Cosmic Visions: New Ideas in Dark Matter: 1707.04591

Experimental Design Drivers for Direct Detection

Design Drivers for $M_{DM} > 10 \text{ GeV}$

M_{DM} > 10 GeV: Tiny, Tiny Rates

M_{DM} > 10 GeV: Coherent Elastic Scattering

Scatter coherently off all the nucleons in a nucleus: $R \propto A^2$ Design Driver #2: Heavy Nuclei

Big Idea: For both very heavy and very light mass dark matter, we're going to take advantage of coherence

M_{DM} > 10GeV: Backgrounds

Design Driver #3: Minimal Radiogenic Backgrounds

- Characteristic Recoil Energy: O(10keV)
- Same recoil energy as radiogenic backgrounds

Get rid of the Hay

Go underground to shield detector from cosmic rays and their decay products

Use only radiopure materials and fabrication techniques

DEMO: Cloud Chamber

M_{DM} >10 GeV: Electronic Recoil / Nuclear Recoil Discrimination

Measure both scintillation light and ionization to distinguish nuclear recoils from electron recoils

M_{DM} >~ 10 GeV: Liquid Noble TPCs

- LZ (XENON 1T, PandaX)
- Exposure: (7 tons)
- High A: Xe
- Underground:
- Radioclean: self shielding
- Electronic/Nuclear Recoil Discrimination

G2 High Mass Sensitivity Estimates

Design Drivers for 100 MeV < M_{DM} < 10 GeV Thermal Relics and 1-10 eV ultra-cold bosons

Current Status: Elastic Nuclear Recoil Direct Detection

Tiny Recoil Energies

- Large nuclei have large coherent rate enhancement
- Transfer of DM kinetic energy inefficient when M_n
 > M_{DM} for elastic scatters

#1 Dominant Design Driver: Energy Threshold

- Ge: larger rates with really small threshold requirements
- He: smaller rates with small threshold requirements

Everything Else Is Easier: Exposure

Estimated Radiogenic Backgrounds in He (~ SNOLAB)

Design Drivers for the Ultimate : 100 MeV < M_{DM} <6 GeV Experiment

	Ge	Не
NR Energy Threshold	~ 10 eV	~ 100 eV
ER/NR Discrimination	~ x40	~ x5000

These numbers a bit handwavy

- LN Gain -> Different dR/dEr -> dR/d? stretching
- Depends upon radiopurity ...

Sensitivity Estimates

No Energy Sensitivity? Go Offshell?

 χ 、

 \boldsymbol{n}

- Kouvaris, Pradler [1607.01789]
- Significant rate penalty
 - Way more exposure
 - Backgrounds?

• DON'T DO IT UNLESS YOU MUST!

Design Drivers for 1 MeV < M_{DM} < 100 MeV

Nuclear Elastic Scattering Ionization Thresholds

- Elastic He Nuclear Recoils won't produce ionization
- Elastic Ge Nuclear Recoils won't produce 1eV of phonons
- Look for e⁻ scatters instead!

Inelastic Electronic Scattering

Inelastic e⁻ recoils you can always conserve momentum and energy. Mass threshold set by bandgap

Problem: Detector Backgrounds in TPCs

Dark Leakage Needs to be Poissonian

N e⁻ background

- N 1e⁻ events occur within detector timing resolution (Poissonian Leakage)
- N e⁻ leakage event (Non-Poissonian Leakage)

Xenon TPCs:

- R_{1e-}=10Hz
- Δt =100ns
- R_{2e} -(Poissonian) = 10⁻⁵Hz

Due to fast timing Xe TPCs can handle a relatively high 1e⁻ rate and still have 2e⁻ bin free. Unfortunately, leakage is non-poissonian (R&D needed)

Dark Leakage Rate in Biased Semiconductors

Man vs Nature

- Precision engineering required to have large Efields and no leakage
- Often nature wins $\ensuremath{\mathfrak{S}}$

Si CCDs: Really Good Engineering

DAMIC & SINSEI:

SINSEI (DAMIC): Meets Single e⁻/h⁺ Sensitivity

SINSEI/DAMIC: Dark Current

Dark Current: < 10-3 e/d/pixel (arXiv:1611.03066)

	Number of DC events (100 g y)		
Thr /e	$DC = 1 imes 10^{-3} \text{ e pix}^{-1} day^{-1}$	$DC = 10^{-5} \text{ e pix}^{-1} day^{-1}$	
1	1×10 ⁸	7×10 ⁵	
2	2×10 ⁴	0.2	
3	3×10 ⁻²	3×10 ⁻⁸	

Problem: Dark Leakage Rate in Biased Semiconductors

Man vs Nature

- Precision engineering required to have large Efields and no leakage
- Often nature wins $\ensuremath{\mathfrak{S}}$

$1 \text{MeV} < M_{\text{DM}} < 100 \text{ MeV}$ Design Drivers

- Electron recoil detector
 - Sensitivity to few e⁻ excitation
 - Xe TPC, Si CCDs, SuperCDMS
 - Very small dark count rate that's Poissonian
 - small bandgap
 - Si CCDs, SuperCDMS
- really sensitive nuclear recoil detector
- Exposure: 1 kgyr
- Radioactive: dru

Or a really sensitive nuclear recoil detector

Design Drivers for 3keV < M_{DM} <1MeV Thermal Relics and

10 meV < M_{DM} < 1 eV Ultra-Cold Bosons

1) Off Shell Nuclear Processes

- Simple elastic NR scattering just doesn't give you a measureable recoil
- Use off-shell processes that produce 2 back to back offshell phonons
- 1604.08206 (Schutz and Zurek)

Design Driver: Energy Sensitivity

2) Inelastic e⁻ recoils with Superconducting Bandgaps

Design Driver: Energy Sensitivity

3) Inelastic Nuclear Recoils with Optical phonons GaAs 40 MP: 1712.06598 35 LO30 $\frac{P_{\bar{D}M}}{2M_{DM}}$ E_{DM} TO25Energy [meV] 2015LA 10 TA50 W Γ Х L Momentum

Design Driver: Single Optical Phonon Sensitivity

Dark Photon Couplings: Polar Crystals

- In ionic crystals, optical phonons are oscillating electric dipoles!
- Very large coupling ^[] to photons (black in ^[] the IR)
- Very large coupling to the dark photons

Ultra-cold Boson Absorption

Coherent Photon Scattering

- High Energy Photons can coherently elastically scatter off nuclei
- Robinson: 1610.07656

Design Drivers 10meV<M_{DM}<1MeV

- Sensitivity to single optical phonon (40meV)
- Radioactivity
 - 4π Active photon veto to remove coherent photon scattering
- Exposure (kgyr)

Design Drivers for M_{DM} <10 meV

Ultralight Dark Matter: M_{DM} <~ 10meV

For very small M_{DM}

- A single particle carries negligible kinetic and rest mass energy
- $n_{DM} = \rho_{DM}/M_{DM}$, so n_{DM} is enormous: <n> >>1
- Classical Field: All of these particles interact coherently
- Build a radio

ADMX

- Direct Detection design drivers different for different mass ranges -> Experiments will look very different
- M_{DM} >10 GeV: Noble TPCs
- M_{DM} < 10meV: Radio
- 10meV<M_{DM}<10GeV: Single excitation / ultra sensitive detectors